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Sow the feast of tomorrow In the Martian sall

Rooted in the future epoch, uplifting the red fertile earth
Kindling the flame of human agricultural civilization across the galaxy.
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Cohesive Ejecta Layer Morphology
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ID: 09-1-001237
Location: 59.84°N, 70.23°E
Diameter: 4.0,0 km

Longitude and Latitude
BEEIERIES )\ SEEERE 2 F ik EL105
BiNNETmaBEIINRINEE. Bl Aa+HiH
=,

Eige

Diameter

BN IFERIE R\ SR ZE A
aFrhEFEIRanNEnR
wIlIE . RIULE,

Chapterl. 7<\l!EiinithiZilt

LR oI HZER
Visual image
@
BITHEBR -t > FZASES = A ST
g
ERTE
&/’ \ﬁ

& <'_: B
| el

BWEBIANIFBEATES. 18 - N

F BB RIA R B EIB R s ’
I SR aT e, WS
FEEWEAL. —

A
|

[1]ROBBINS S |, HYNEK B M. A new global database of Mars impact craters =1 km: 1. Database creation, properties, and parameters[|/OL]. Journal of Geophysical Research: Planets, 2012, 117(ES5). [2025-03-06].
DOI:10.1029/2011JE003966.
[2] BRAIN D A, JAKOSKY B M. Atmaospheric loss since the onset of the Martian geologic record: Combined role of impact erosion and sputtering[J/OL]. [2025][2025-04-06]. DOI:10.1029/98JE02074.

[3] OSINSKI G R, PIERAZZO E. Impact cratering: Processes and products[)]. Impact Cratering, 2013: 1-20.

[4] HARGITAI H. Radially Striated Ejecta (Mars)[M/OL]//HARGITAI H, KERESZTURI A. Encyclopedia of Planetary Landforms. New York, NY: Springer, 2021: 1-2[2025-04-06]. DOI:10.1007/978-1-4614-9213-9 641-1.
[5] KENKMANN T, WULF G, STURM S, . Double-layered ejecta craters on Mars: morphology, formation, and a comparison with the Ries ejecta blanket[]]. 2015: 4266.

NEMmGIETIRCIMIL

4 Visualization of Martian Craters
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ID: 16-1-001884
Location: -4656°N, 145, 13°E
KDiameter: 431 km
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ID: 10-1-001212
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ID: 10-1-008311
Location: 15.08°N, 111.99°E
kDiameter: 10,13 km
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\
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ID: 15-1-036211
Location: -32.64°N, 114.45°E
Diameter: 20,08 km
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ID: 01-1-001823
Location: 51.40°N, 234.40°E

ID: O2-1-006483
Location: 6.83°N, 193.03°E
\Diameter: 4712 km

kDiameter: 1312 km

%

ID: 0S-1-003480
Location: 44E69°N, 341.43°E
Diameter: 4.35 km

. & (2 ™
SLERC, HuSL DLEPC, Hu/SmSL SLERS, SmBL, Pseudo-Small-Crown l
Smp CPxFF

ID: 02-1-004991
Location: 11.82°N, 23B971°E
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Through the

artificial cell pathway
designed by synthetic biology,
the efficiency of mitochondrial ATP synthesis
Is enhanced, the mitochondrial genome is

accurately edited by

technology,
expression of

Recovery speed of 45%

CRISPR-Cas12b

and the
genes

related to energy metabolism is improved.
At the same time, the optimized metabolic
enzymes are directly delivered to
muscle cells through the nanomedicine
delivery system, significantly
accelerating physical

recovery.
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The Result of Cultivation



Chapterl. 7<UlBiintthizktlt

ol
i
r
e |
3

(PO = 8 135 SR
it ".f‘.i! ' .
ll.‘"v’ql“'

RSN T SR DO

*l 't "" s |

P .
T s tavrinn wihe

~Ingpre

 of Martian Pota

.
-
..

* Paper is fabricated by GPT. Don't take it seriously.

LN ER
16 Paper Publishment

Chaptere. T2

(g
Ort
i
=0
i
cH




Chapterl. 7R\l BiintthiZetlt

Bioengineered Potato Cultivation in Martian Impact Craters: A Multi-Dimensional Approach to Functional Crop

Adaptation and Human Health Enhancement

Authors: Zi Hao, Ruan Cao
Abstract

We present a framework for establishing agriculturally viable zones within
Martian impact craters through the synergistic integration of geospatial
analytics, synthetic biology, and closed-loop ecosystem engineering.
Leveraging a curated dataset of 101 craters screened from 300,000
candidates, we demonstrate the feasibility of cultivating glycoalkaloid-
modified Solanum tuberosum variants engineered to produce nootropic
and longevity-promoting metabolites under simulated Martian conditions.
Yield metrics, transcriptomic profiles, and human serum biomarker
analyses confirm enhanced neuroprotective effects (p<0.001) compared to
terrestrial counterparts.

Introduction

Martian agriculture faces dual imperatives: sustaining human colonies
through caloric provision while counteracting the degenerative effects of
prolonged space habitation. Impact craters offer unique
microenvironments—their topographic depression reduces cosmic
radiation exposure by 38-67% (NASA Mars Reconnaissance Orbiter data,
2035), while regolith stratification provides heterogeneous mineral
substrates for hydroponic augmentation. Our study advances prior work
on extraterrestrial crop adaptation (e.g., The Martian potato trials; Watney
et al. 2032 Science) by introducing metabolite-targeted genetic

circuits that couple environmental stress responses to therapeutic
compound biosynthesis.

Dataset Curation
A convolutional neural network (CNN) trained on 1.2 TB of HIiRISE imagery
(0.25 m/pixel resolution) identified 101 candidate craters meeting multi-
parametric viability thresholds:
« Geochemical stability: Hydrated sulfate concentrations =3.2 wt% (LIBS
spectra from Curiosity rover)
« Thermal buffering: Diurnal temperature variance <45°C (Mars Climate
Sounder orbital thermal profiles)
« Structural integrity: Rim height-to-diameter ratios between 0.02-0.05 to
prevent regolith collapse
Craters were clustered into 7 biosignature archetypes using t-SNE
dimensionality reduction .

Genetic Engineering Protocol

Baseline adaptation: CRISPR-Cas9 editing of StCBF1 transcriptional

regulators enhanced cold/drought tolerance (germination rate: 92% vs.

41% in wild-type at 600 Pa CO,).

Functional enhancement: Modular transgene cassettes inserted

via Agrobacterium tumefaciens-mediated transformation:

1. HSAPOE4 neuronal cholesterol transport genes fused to tuber-specific
patatin promoters

2. Artemisinin-derived sesquiterpene synthases under hypoxia-
inducible HRE2 regulatory elements

3. Telomerase-activating TERT peptide expression driven by circadian-
regulated StLHY promoters

Metabolomic profiling (LC-HRMS) confirmed 2.3x increase in a-lipoic acid

(p=0.0032) and 17B-estradiol analogs (7.8 pg/g dry mass) in edited tubers.

Fig1l. MRI images of 8 Martian super potatoes

Experimental Validation

A three-phase cultivation system was deployed across 22 craters (Fig. 3):

1. Laboratory simulation: Mars regolith simulant MGS-1 amended with
cyanobacterial biofertilizers (ODgs0=0.8)

2. Controlled greenhouse: 90% reduced atmospheric pressure, 16 h/8 h
LED light cycles (PAR 380-720 nm)

3. In situ crater deployment: Autonomous growth chambers with
radiation-shielded (5 cm boronated polyethylene) root zones

Key metrics after 120 sols:

Parameter Earth Control Mars Simulation

Tuber biomass (kg/m?) 4.7 +0.3 3.1+04°
Nootropic metabolites 12 compounds 27 compounds**
ROS scavenging (%) 58 84°***

(p<0.05, p<0.01, p<0.001; two-tailed t-test)

1|
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a

b
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Discussion

This work establishes that Martian impact craters can serve as
bioregenerative life-support hubs when combined with precision
synthetic biology. The induced production of y-aminobutyric acid (GABA)
and superoxide dismutase mimics demonstrates the viability

of environment-coupled pharmacophagy—a paradigm where crops
dynamically synthesize compounds counteracting habitat-specific health
risks (e.g., cosmic ray-induced neurodegeneration).

Methods Summary

Full experimental protocols, including CRISPR guide RNA sequences and
crater coordinate data, are available in the Supplementary Information.
Transcriptome data are deposited in the Interplanetary GeneBank (IGB
Accession: marpot.IGB2209).
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